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Introduction 
Today’s organizations are increasingly tasked to 
bring things to market quickly and predictably. For 
organizations to be successful, there needs to be an 
urgency for agility, transparency, and a recognition that 
as requirements change, the supporting architecture for 
large initiatives must be enhanced to keep pace. 

As AI/ML is evolving, and significantly expanding in 
the enterprise space, and that means that what were 
once research lab level requirements have evolved 
into enterprise deployments that must meet Service 
Level Objective (SLO) commitments for time to deploy, 
completion of epochs, and resiliency for different failure 
events. The technique that has become dominant to 
assist with these SLOs in AI/ML is checkpointing. 
Checkpointing allows you to save a ‘journal’ of a training 
epoch at a variety of points and then use that saved point 
for a number of purposes. 

Why Checkpoint?
On GPU hosts, learning rate losses can vary for a number 
of reasons. Simple errors such as omitting a data shuffle 
in a data preparation stage, or an unexpected, failed 
code update can set a project back hours or even days 
if not caught in time. Hardware failures can also force 
a recovery to a known good state of a model. GPUs 

in a cluster whether on-prem or in the cloud can have 
outages. In the cloud, because the GPU hardware tends 
to be managed as a service, you may have GPUs removed 
and others added into clusters ad-hoc depending on the 
maintenance and update schedule of the cloud provider. 

You can recover from a failure using a checkpoint without 
having to go back to the beginning of the training 
cycle, and you can also clone models out to test where 
deviations in precision have occurred without having 
to wait for a full training epoch to finish. This enables 
developer productivity by sharing in the training that has 
occurred up to that point without having to restart from 
the beginning.   

Depending on your needs, you can checkpoint as 
granularly as needed after every embed or relatively 
infrequently by queueing up a longer chain of embeds 
and then dump a larger set of checkpoints all at once. 
The tradeoff is in how far back you need to go to recover 
the checkpoint and restart the training. The farther back 
you go, the more training needs to be re-run to bring the 
model back to the point where the failure occurred. In 
an era where a small cluster of 10 NVIDIA H100 systems 
can cost as much as $1000 per hour to run, being able to 
recover your model as quickly as possible without having 
to re-run large amounts of training to bring the model 
up-to-date is paramount. 
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The current industry trend with LLMs is to checkpoint 
as often as possible to minimize any recovery time. 
Aggressive checkpointing however, may introduce 
an impact on the data infrastructure in the form of 
IO bottlenecks to the data storage being used in the 
environment. This bottlenecking directly impacts 
AI researchers and developers wall clock time to 
develop and train AI models. In particular, any delays 
in checkpointing commits to storage can stall model 
training until the checkpoint completes. 

Impact on Infrastructure 
In a production environment, the storage layer has an 
outsized impact on the ability to checkpoint often. If 
the storage layer is unable to efficiently process the 
checkpoint writes, then the model training will be stalled 
until the checkpoint completes. Because checkpointing 
is a latency sensitive operation, when a storage system 
struggles to run multiple jobs (Figure 1) at the same 
time in different phases, such as concurrent reads + 
writes, massively parallel reads and committing tuned 
and trained models to storage at the completion of a job, 
the time to completion of a checkpoint may be affected. 
Checkpointing during a pipeline adds another layer of 
IO to be handled by this infrastructure. Legacy storage 

vendors have made great claims to demonstrate how they 
can do data management, scale performance, and lower 
costs, but in many cases, a product designed for legacy 
file services can struggle to keep pace with the diverse 
high-performance read, write, and archive requirements 
an AI pipeline demands. 

How WEKA Helps
The WEKA Data Platform is specifically designed for 
this use case with a high-performance file system that 
services AI/ML workloads with open standards. WEKA’s 
ability to run diverse concurrent workloads distinguishes 
it from other legacy storage by providing industry 
leading metadata performance, scale out read and write 
performance on large and small file operations, as well as 
operational efficiency when storing billions of small files. 

Many elements of a workflow require each step to 
complete before you can reach the end of the job. With 
checkpointing specifically, training on a model cannot 
complete until the checkpoint has finished writing. 
If a checkpoint requires performance that exceeds a 
legacy storage system’s capability, job runtime can 
slow significantly and the researcher starts asking the 
question again: “why isn’t it running as fast as I need?”.
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https://www.weka.io/lp/io-profiles-in-generative-ai-pipelines/
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The WEKA Data Platform’s services are specifically 
designed to provide concurrent operations for all your 
workloads (Figure 2), whether NLP, Computational 
Chemistry for Genomics, Image Recognition, Financial 
Analysis, Generative AI, or something that has yet to 
be realized. With the ease of creating data experiments 
on as small an environment as your laptop, imagine 
the concurrency of tens or hundreds or thousands of 
experiments on enterprise level infrastructure. WEKA can 
handle this data blender with ease.

Checkpoint Performance Testing 
To test checkpointing performance between WEKA 
and another Storage platform, we utilized a tool from 
NVIDIA, NeMo. NeMo is widely popular and is used as a 
foundational component in large numbers of AI projects, 
both large and small and is representative of a pipeline 
tool that would be used for checkpointing.

NVIDIA created the NeMo™ generative AI toolkit to 
help with the entire data pipeline and tool chain that a 
scientist uses. This provides a consistent and optimized 
infrastructure to enhance existing Deep Learning (DL) 
technology and foundation models based on the lineage 
of their NVIDIA GPU Container (NGC) efforts. NeMo 
provides a framework for training, retuning foundation 
models, GPU telemetry, TensorBoard observability and 
a rich checkpoint capability designed to accommodate 
different aspects of model development. If you have an 
AI stack running against NVIDIA GPUs, NeMo assists 
this workflow by providing features that allow taking 
a pipeline for model training all the way from POC 
to production. During this workflow, when failures 
occur, training can be reverted and restarted using 
checkpointing with model observability. 

FIG. 2
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NeMo’s checkpoint capability allows for incremental 
training with observability. On the system being 
monitored, when one of the errors mentioned earlier 
occurs, reverting back to the last point when training 
was progressing as expected by using best practices for 
NeMo’s checkpoint recovery capabilities enables rapid 
recovery, translating to faster time to restart training, less 
idling of expensive GPUs while waiting to restart and a 
safety net for recovery of work, regardless of toolchain or 
model modality. 

While NeMo’s features are well fleshed out, it is just 
a layer of a stack and is dependent on a performant 
infrastructure underneath it to drive real world results. 
There are other AI frameworks as well that depend on 
checkpointing best practices to ensure a smooth and 
recoverable AI training workflow.

Process and Models Used
For this paper, we have built out a NeMo environment 
and will use it to train a FastPitch parallel text-to-speech 
model, an ASR speech-to-text model, as well as a larger 
MegatronBERT model (BioMegatron) for NLP. This shows 
checkpointing performance across relatively small, 
medium, and large language models. 

To start, we will finetune a single speaker FastPitch 
(with alignment) model on 5 mins of a new speaker’s 
data. We will finetune the model parameters only on the 
new speaker’s text and speech pairs. We download the 
training data, then generate and run a training command 
to finetune FastPitch, and synthesize the audio from 
the trained checkpoint. Documentation of how to run a 
FastPitch training with NeMo including the specific model 
parameters used in this example and run logs is listed in 
the appendix of this paper. 

WEKA Integration
Leveraging WEKA with NeMo is simple. WEKA can be 
deployed in all the hyperscale clouds, or on premises, or 
in a hybrid mode. Compute clients interact with WEKA 
via any supported protocol. POSIX, NFS, SMB and S3 
are all supported as well as NVIDIA GDS. Since many 
applications are containerized, WEKA also provides a CSI 
driver to directly attach to Kubernetes pods. For NeMo, 
the user experience feels like being attached to a big, fast 
NVME disk that is capable of exabyte scale but adheres 
to all the standards you would expect from a POSIX 
resource. To a researcher it feels as if your data is as local 
as it would be on a workstation or laptop. 

Once NeMo is configured with a WEKA POSIX client, 
steps for data preparation, training, tuning and model 
deployment are turnkey, and checkpoint usage is well 
documented and understood. 

Test Environment
To test out checkpointing, we built a small WEKA cluster 
in AWS consisting of 6x i3en.2xlarge EC2 instances  
using the WEKA POSIX client to talk to the GPU. We  
then built out a separate c5n.18xlarge instance as a 
dedicated high-performance NFS server. The training  
was done on a single G4dn.8xl instance with a T4 GPU 
with 16GB of vRAM. These instances were all chosen to 
ensure that at the throughput needed, networking would 
not be a bottleneck. Latency was measured on the  
WEKA cluster using a WEKA stats function to measure 
round-trip latency from client to the WEKA cluster. For 
the NFS server, Tshark (terminal based Wireshark) line 
capture was used to measure roundtrip latency of the 
checkpoint completion. 

https://docs.nvidia.com/nemo-framework/user-guide/latest/nemotoolkit/asr/results.html
https://fastpitch.github.io
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Write latency measurement:
During the FastPitch training we followed the best practices for checkpointing and using a trace mechanism, 
measured how long it took to complete each checkpoint in the epoch. As shown in Figure 3, the average span between 
checkpoints was only 10 seconds. Notably, the WEKA data platform was able to write the checkpoints for the FastPitch 
model at an average of ~900us, while the NFS server was nearly twice the latency at ~1850us.

FIG. 3
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For the medium-sized ASR speech-to-text model in Figure 4, similar results were seen, With WEKA again being 
in the ~900us average, while the NFS server was ~1825us. Note that as the model gets larger, and the number of 
parameters increase, the amount of time between checkpoints becomes less predictable due to new layers being 
added and different paths taken depending on weights and biases. This lack of predictability makes it harder to tune a 
filesystem to match the training workload, especially when multiple pipelines are running in parallel. In this case, some 
checkpoints are 30+ seconds apart, and others happen less than 5 seconds apart.

FIG. 4
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And finally, when training the larger BioMegatron model over a much larger set of parameters, we see in Figure 5 that 
WEKA was able to service the checkpointing at an average of ~1090us and the NFS server averaged 1850us. While 
the resolution of the graph makes it impossible to show the timestamps, the unpredictability of the checkpointing is 
even more so than before, with some over 45 seconds apart, and others happening as little as 4 seconds apart. This 
highlights why latency is so important: Since checkpoint timing is non-predictable, the ability to handle it before the next 
checkpoint comes in becomes crucial, otherwise it can stall the entire model training until each checkpoint is committed.  

FIG. 5
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Results
In this testing, we have shown how a cloud-based small 
WEKA infrastructure can be up to 50% faster at handling 
checkpointing than a high-performance NFS server. At 
the small scale presented here, the differences may not 
seem significant, but consider this: Distributed model 
training as models get larger and larger will also have 
distributed checkpointing. With the latest GPUs such as 
the GB200 from NVIDIA being hundreds of times faster 
than the single T4 used in this test, you can expect a 
much faster rate of training and a much faster rate of 
checkpointing as well. If the model is distributed over 
multiple GPUs, then the latency time will stall all GPUs 
until the checkpoint is committed.

Conclusions
Solutions for AI have until recently been based on 
infrastructure geared towards traditional enterprise 
IT. These solutions have often left customers with 
components in the stack that limit AI/ML development 
performance or and deviate from best practices in 

order to accommodate legacy architectures. Modern 
AI deployments require low-latency checkpointing to 
mitigate risk and enable operational predictability. If 
the storage layer in the stack is unable to meet an SLO 
(Service level Objective), it needs to be replaced to avoid 
costly delays to the AI data pipeline.

WEKA – A better solution for model 
checkpointing
As shown in the results above, the WEKA latency 
advantage translates to real world savings in 
checkpointing completion times. From a sustainability 
standpoint, the ability to rapidly recover and prevent 
GPUs from re-doing hours or days of work can’t be 
ignored. In contrast to NFS based solutions for model 
training, WEKA has proven itself to have significantly 
lower latency, as well as being able to handle any 
IO profile of workload thrown at it. The table below 
highlights some of the differences between WEKA and 
most legacy enterprise NFS storage in an AI environment.

Legacy Infrastructure (NFS) WEKA Powered Infrastructure

Provides SLO for 
Checkpoints

May have to compromise on how often 
checkpoints can be taken to optimize for the 
infrastructure

No checkpoint restrictions. Checkpoint as 
often as needed

Multi-IO profile 
performance during 
Checkpointing

Performance highly variable. Higher 
latency can lead to bottlenecks across the 
infrastructure

Reads, writes, metadata all with consistent 
low latency. QOS to help with isolation of 
dedicated work flows

Tuning required per 
workload/workflow

Highly specialized per workload, may 
require multiple instances of storage 
services with multiple different mounting 
points for tuned parameters

Single mount with POSIX client provides 
all storage services, deployed with devops-
level of standards and observability
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WEKA features and industry integrations also helps 
optimize and streamline all parts of an AI-native 
infrastructure beyond just checkpointing:

• No filesystem or client tuning requirement to optimize 

for the workload. Control of training and job dynamics  

is left at the researcher level as hyperparameters.

• WEKA’s ability to run anywhere including on-premises  

or in the cloud allows researchers to run jobs anywhere 

and take advantage of diverse compute resources.

• As performance requirements change, WEKA  

can elastically scale up and down to match the 

requirements needed in the AI workflow.

• NVIDIA BasePOD and SuperPOD certified  

allowing for well-known reference architectures  

to speed deployment.

• WEKA scaling into multi-exabytes of capacity, and  

the ability to address trillions of files ensure that as  

data sets continually get larger, researchers don’t  

have to worry about engineering special data  

directory hierarchies to hold all the data.

• WEKA transparent tiering enables researchers to store 

large datasets and models for ‘explainable AI’ at scale to 

achieve practical cost economics and operational ease 

as the environment scales. Tiering assists with both 

infrastructure cost and the sustainable OPEX of power 

and cooling as well. 

• WEKA Snap-to-object capabilities enable both  

data mobility for hybrid use cases, and file system 

recovery for data protection regardless of the  

amount of data stored.

The WEKA AI native data platform has proven these 
capabilities by enabling some of the largest GPU clusters 
in production in the world to do groundbreaking AI 
research in areas as diverse as computer vision, NLP, 
High frequency trading, Computational Chemistry 
and materials science, Generative AI for media and 
entertainment and more. WEKA continues to help 
customers get the most out of their AI processes  
and workflows. 

Want to know more? Visit https://www.weka.io/
data-platform/solutions/ai-machine-learning/

https://www.weka.io/data-platform/solutions/ai-machine-learning/
https://www.weka.io/data-platform/solutions/ai-machine-learning/
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Appendix
How To build a NeMo toolkit: 
Use the NeMo QuickStart guide at : https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/starthere/
intro.html to set up and deploy a basic NeMo environment.

Finetuning FastPitch with the NeMo toolkit: 
https://github.com/NVIDIA/NeMo/blob/stable/tutorials/tts/FastPitch_Finetuning.ipynb

FastPitch training setup and parameters for the test run:

[NeMo W 2024-02-02 21:47:39 nemo_logging:349] /usr/local/lib/python3.10/dist-packages/hydra/_internal/
hydra.py:119: UserWarning: Future Hydra versions will no longer change working directory at job runtime 
by default.
    See https://hydra.cc/docs/1.2/upgrades/1.1_to_1.2/changes_to_job_working_dir/ for more information.
      ret = run_job(
    
[NeMo W 2024-02-02 21:47:39 nemo_logging:349] /usr/local/lib/python3.10/dist-packages/lightning_fabric/
connector.py:554: UserWarning: 16 is supported for historical reasons but its usage is discouraged. 
Please set your precision to 16-mixed instead!
      rank_zero_warn(
    
Using 16bit Automatic Mixed Precision (AMP)
GPU available: True (cuda), used: True
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs
[NeMo I 2024-02-02 21:47:39 exp_manager:394] Experiments will be logged at 
ljspeech_to_9017_no_mixing_5_mins/FastPitch/2024-02-02_21-47-39
[NeMo I 2024-02-02 21:47:39 exp_manager:835] TensorboardLogger has been set up
[NeMo W 2024-02-02 21:47:39 exp_manager:931] The checkpoint callback was told to monitor a validation 
value and trainer’s max_steps was set to 1000. Please ensure that max_steps will run for at least 25 
epochs to ensure that checkpointing will not error out.
 NeMo-text-processing :: INFO     :: Creating ClassifyFst grammars.
Creating ClassifyFst grammars.
[NeMo W 2024-02-02 21:48:09 en_us_arpabet:66] apply_to_oov_word=None, This means that some of words 
will remain unchanged if they are not handled by any of the rules in self.parse_one_word(). This may 
be intended if phonemes and chars are both valid inputs, otherwise, you may see unexpected deletions in 
your input.
[NeMo I 2024-02-02 21:48:09 dataset:229] Loading dataset from ./9017_manifest_train_dur_5_mins_local.
json.
76it [00:00, 2569.52it/s]
[NeMo I 2024-02-02 21:48:09 dataset:267] Loaded dataset with 76 files.
[NeMo I 2024-02-02 21:48:09 dataset:269] Dataset contains 0.08 hours.
[NeMo I 2024-02-02 21:48:09 dataset:377] Pruned 0 files. Final dataset contains 76 files
[NeMo I 2024-02-02 21:48:09 dataset:379] Pruned 0.00 hours. Final dataset contains 0.08 hours.
[NeMo I 2024-02-02 21:48:09 dataset:229] Loading dataset from ./9017_manifest_dev_ns_all_local.json.
2it [00:00, 2545.86it/s]
[NeMo I 2024-02-02 21:48:09 dataset:267] Loaded dataset with 2 files.
[NeMo I 2024-02-02 21:48:09 dataset:269] Dataset contains 0.00 hours.
[NeMo I 2024-02-02 21:48:09 dataset:377] Pruned 0 files. Final dataset contains 2 files
[NeMo I 2024-02-02 21:48:09 dataset:379] Pruned 0.00 hours. Final dataset contains 0.00 hours.
[NeMo I 2024-02-02 21:48:09 features:289] PADDING: 1
 NeMo-text-processing :: INFO     :: Creating ClassifyFst grammars.
Creating ClassifyFst grammars.
[NeMo W 2024-02-02 21:48:42 en_us_arpabet:66] apply_to_oov_word=None, This means that some of words 
will remain unchanged if they are not handled by any of the rules in self.parse_one_word(). This may 
be intended if phonemes and chars are both valid inputs, otherwise, you may see unexpected deletions in 
your input.

https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/starthere/intro.html
https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/starthere/intro.html
https://github.com/NVIDIA/NeMo/blob/stable/tutorials/tts/FastPitch_Finetuning.ipynb
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[NeMo W 2024-02-02 21:48:42 modelPT:161] If you intend to do training or fine-tuning, please call the 
ModelPT.setup_training_data() method and provide a valid configuration file to setup the train data 
loader.
    Train config : 
    dataset:
      _target_: nemo.collections.tts.torch.data.TTSDataset
      manifest_filepath: /ws/LJSpeech/nvidia_ljspeech_train_clean_ngc.json
      sample_rate: 22050
      sup_data_path: /raid/LJSpeech/supplementary
      sup_data_types:
      - align_prior_matrix
      - pitch
      n_fft: 1024
      win_length: 1024
      hop_length: 256
      window: hann
      n_mels: 80
      lowfreq: 0
      highfreq: 8000
      max_duration: null
      min_duration: 0.1
      ignore_file: null
      trim: false
      pitch_fmin: 65.40639132514966
      pitch_fmax: 2093.004522404789
      pitch_norm: true
      pitch_mean: 212.35873413085938
      pitch_std: 68.52806091308594
      use_beta_binomial_interpolator: true
    dataloader_params:
      drop_last: false
      shuffle: true
      batch_size: 24
      num_workers: 0
    
[NeMo W 2024-02-02 21:48:42 modelPT:168] If you intend to do validation, please call the ModelPT.setup_
validation_data() or ModelPT.setup_multiple_validation_data() method and provide a valid configuration 
file to setup the validation data loader(s). 
    Validation config : 
    dataset:
      _target_: nemo.collections.tts.torch.data.TTSDataset
      manifest_filepath: /ws/LJSpeech/nvidia_ljspeech_val_clean_ngc.json
      sample_rate: 22050
      sup_data_path: /raid/LJSpeech/supplementary
      sup_data_types:
      - align_prior_matrix
      - pitch
      n_fft: 1024
      win_length: 1024
      hop_length: 256
      window: hann
      n_mels: 80
      lowfreq: 0
      highfreq: 8000
      max_duration: null
      min_duration: null
      ignore_file: null
      trim: false
      pitch_fmin: 65.40639132514966
      pitch_fmax: 2093.004522404789
      pitch_norm: true
      pitch_mean: 212.35873413085938
      pitch_std: 68.52806091308594
      use_beta_binomial_interpolator: true
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    dataloader_params:
      drop_last: false
      shuffle: false
      batch_size: 24
      num_workers: 0
    
[NeMo I 2024-02-02 21:48:42 features:289] PADDING: 1
[NeMo I 2024-02-02 21:48:42 save_restore_connector:249] Model FastPitchModel was successfully restored 
from /NeMo/weka-workspace/nemo/tutorials/tts/tts_en_fastpitch_align.nemo.
[NeMo I 2024-02-02 21:48:42 modelPT:1234] Model checkpoint restored from nemo file with path : `./
tts_en_fastpitch_align.nemo`
LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]
[NeMo I 2024-02-02 21:48:43 modelPT:728] Optimizer config = Adam (
    Parameter Group 0
        amsgrad: False
        betas: [0.9, 0.999]
        capturable: False
        differentiable: False
        eps: 1e-08
        foreach: None
        fused: None
        lr: 0.0002
        maximize: False
        weight_decay: 1e-06
    )
[NeMo I 2024-02-02 21:48:43 lr_scheduler:772] Scheduler not initialized as no `sched` config supplied to 
setup_optimizer()

  | Name                | Type                              | Params
--------------------------------------------------------------------------
0 | mel_loss_fn         | MelLoss                           | 0     
1 | pitch_loss_fn       | PitchLoss                         | 0     
2 | duration_loss_fn    | DurationLoss                      | 0     
3 | energy_loss_fn      | EnergyLoss                        | 0     
4 | aligner             | AlignmentEncoder                  | 1.0 M 
5 | forward_sum_loss_fn | ForwardSumLoss                    | 0     
6 | bin_loss_fn         | BinLoss                           | 0     
7 | preprocessor        | AudioToMelSpectrogramPreprocessor | 0     
8 | fastpitch           | FastPitchModule                   | 45.8 M
--------------------------------------------------------------------------
45.8 M    Trainable params
0         Non-trainable params
45.8 M    Total params
183.035   Total estimated model params size (MB)
[NeMo W 2024-02-02 21:48:48 nemo_logging:349] /usr/local/lib/python3.10/dist-packages/pytorch_lightning/
loops/fit_loop.py:281: PossibleUserWarning: The number of training batches (7) is smaller than the 
logging interval Trainer(log_every_n_steps=100). Set a lower value for log_every_n_steps if you want to 
see logs for the training epoch.
      rank_zero_warn(
    
Training: 0it [00:00, ?it/s][NeMo I 2024-02-02 21:48:48 preemption:56] Preemption requires torch 
distributed to be initialized, disabling preemption
Epoch 24: 100%|█| 7/7 [00:02<00:00,  3.21it/s, v_num=7-39, train_step_timing in 
Validation: 0it [00:00, ?it/s]
Validation:   0%|                                         | 0/1 [00:00<?, ?it/s]
Validation DataLoader 0:   0%|                            | 0/1 [00:00<?, ?it/s]
Epoch 24: 100%|█| 7/7 [00:02<00:00,  2.71it/s, v_num=7-39, train_step_timing in 
                                                                                Epoch 24, global 
step 175: ‘val_loss’ reached 1.89732 (best 1.89732), saving model to ‘/NeMo/weka-workspace/nemo/
tutorials/tts/ljspeech_to_9017_no_mixing_5_mins/FastPitch/2024-02-02_21-47-39/checkpoints/FastPitch--
val_loss=1.8973-epoch=24.ckpt’ as top 3
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Epoch 49: 100%|█| 7/7 [00:02<00:00,  3.18it/s, v_num=7-39, train_step_timing in 
Validation: 0it [00:00, ?it/s]
Validation:   0%|                                         | 0/1 [00:00<?, ?it/s]
Validation DataLoader 0:   0%|                            | 0/1 [00:00<?, ?it/s]
Epoch 49: 100%|█| 7/7 [00:02<00:00,  2.65it/s, v_num=7-39, train_step_timing in 
                                                                                Epoch 49, global 
step 350: ‘val_loss’ reached 2.04128 (best 1.89732), saving model to ‘/NeMo/weka-workspace/nemo/
tutorials/tts/ljspeech_to_9017_no_mixing_5_mins/FastPitch/2024-02-02_21-47-39/checkpoints/FastPitch--
val_loss=2.0413-epoch=49.ckpt’ as top 3
Epoch 74: 100%|█| 7/7 [00:02<00:00,  3.28it/s, v_num=7-39, train_step_timing in 
Validation: 0it [00:00, ?it/s]
Validation:   0%|                                         | 0/1 [00:00<?, ?it/s]
Validation DataLoader 0:   0%|                            | 0/1 [00:00<?, ?it/s]
Epoch 74: 100%|█| 7/7 [00:02<00:00,  2.71it/s, v_num=7-39, train_step_timing in 
                                                                                Epoch 74, global 
step 525: ‘val_loss’ reached 2.00175 (best 1.89732), saving model to ‘/NeMo/weka-workspace/nemo/
tutorials/tts/ljspeech_to_9017_no_mixing_5_mins/FastPitch/2024-02-02_21-47-39/checkpoints/FastPitch--
val_loss=2.0018-epoch=74.ckpt’ as top 3
Epoch 99: 100%|█| 7/7 [00:02<00:00,  3.16it/s, v_num=7-39, train_step_timing in 
Validation: 0it [00:00, ?it/s]
Validation:   0%|                                         | 0/1 [00:00<?, ?it/s]
Validation DataLoader 0:   0%|                            | 0/1 [00:00<?, ?it/s]
Epoch 99: 100%|█| 7/7 [00:02<00:00,  2.63it/s, v_num=7-39, train_step_timing in 
                                                                                Epoch 99, global 
step 700: ‘val_loss’ reached 1.92470 (best 1.89732), saving model to ‘/NeMo/weka-workspace/nemo/
tutorials/tts/ljspeech_to_9017_no_mixing_5_mins/FastPitch/2024-02-02_21-47-39/checkpoints/FastPitch--
val_loss=1.9247-epoch=99.ckpt’ as top 3
Epoch 124: 100%|█| 7/7 [00:02<00:00,  3.35it/s, v_num=7-39, train_step_timing in
Validation: 0it [00:00, ?it/s]
Validation:   0%|                                         | 0/1 [00:00<?, ?it/s]
Validation DataLoader 0:   0%|                            | 0/1 [00:00<?, ?it/s]
Epoch 124: 100%|█| 7/7 [00:02<00:00,  2.75it/s, v_num=7-39, train_step_timing in
                                                                                Epoch 124, global 
step 875: ‘val_loss’ reached 1.86749 (best 1.86749), saving model to ‘/NeMo/weka-workspace/nemo/
tutorials/tts/ljspeech_to_9017_no_mixing_5_mins/FastPitch/2024-02-02_21-47-39/checkpoints/FastPitch--
val_loss=1.8675-epoch=124.ckpt’ as top 3
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