
Checkpointing
for Resiliency and
Performance in
AI Pipelines

White Paper

WHITE PAPER

2

Checkpointing for
Resiliency and Performance
in AI Pipelines
Introduction
Today’s organizations are increasingly tasked to
bring things to market quickly and predictably. For
organizations to be successful, there needs to be an
urgency for agility, transparency, and a recognition that
as requirements change, the supporting architecture for
large initiatives must be enhanced to keep pace.

As AI/ML is evolving, and significantly expanding in
the enterprise space, and that means that what were
once research lab level requirements have evolved
into enterprise deployments that must meet Service
Level Objective (SLO) commitments for time to deploy,
completion of epochs, and resiliency for different failure
events. The technique that has become dominant to
assist with these SLOs in AI/ML is checkpointing.
Checkpointing allows you to save a ‘journal’ of a training
epoch at a variety of points and then use that saved point
for a number of purposes.

Why Checkpoint?
On GPU hosts, learning rate losses can vary for a number
of reasons. Simple errors such as omitting a data shuffle
in a data preparation stage, or an unexpected, failed
code update can set a project back hours or even days
if not caught in time. Hardware failures can also force
a recovery to a known good state of a model. GPUs

in a cluster whether on-prem or in the cloud can have
outages. In the cloud, because the GPU hardware tends
to be managed as a service, you may have GPUs removed
and others added into clusters ad-hoc depending on the
maintenance and update schedule of the cloud provider.

You can recover from a failure using a checkpoint without
having to go back to the beginning of the training
cycle, and you can also clone models out to test where
deviations in precision have occurred without having
to wait for a full training epoch to finish. This enables
developer productivity by sharing in the training that has
occurred up to that point without having to restart from
the beginning.

Depending on your needs, you can checkpoint as
granularly as needed after every embed or relatively
infrequently by queueing up a longer chain of embeds
and then dump a larger set of checkpoints all at once.
The tradeoff is in how far back you need to go to recover
the checkpoint and restart the training. The farther back
you go, the more training needs to be re-run to bring the
model back to the point where the failure occurred. In
an era where a small cluster of 10 NVIDIA H100 systems
can cost as much as $1000 per hour to run, being able to
recover your model as quickly as possible without having
to re-run large amounts of training to bring the model
up-to-date is paramount.

WHITE PAPER

3

3

The current industry trend with LLMs is to checkpoint
as often as possible to minimize any recovery time.
Aggressive checkpointing however, may introduce
an impact on the data infrastructure in the form of
IO bottlenecks to the data storage being used in the
environment. This bottlenecking directly impacts
AI researchers and developers wall clock time to
develop and train AI models. In particular, any delays
in checkpointing commits to storage can stall model
training until the checkpoint completes.

Impact on Infrastructure
In a production environment, the storage layer has an
outsized impact on the ability to checkpoint often. If
the storage layer is unable to efficiently process the
checkpoint writes, then the model training will be stalled
until the checkpoint completes. Because checkpointing
is a latency sensitive operation, when a storage system
struggles to run multiple jobs (Figure 1) at the same
time in different phases, such as concurrent reads +
writes, massively parallel reads and committing tuned
and trained models to storage at the completion of a job,
the time to completion of a checkpoint may be affected.
Checkpointing during a pipeline adds another layer of
IO to be handled by this infrastructure. Legacy storage

vendors have made great claims to demonstrate how they
can do data management, scale performance, and lower
costs, but in many cases, a product designed for legacy
file services can struggle to keep pace with the diverse
high-performance read, write, and archive requirements
an AI pipeline demands.

How WEKA Helps
The WEKA Data Platform is specifically designed for
this use case with a high-performance file system that
services AI/ML workloads with open standards. WEKA’s
ability to run diverse concurrent workloads distinguishes
it from other legacy storage by providing industry
leading metadata performance, scale out read and write
performance on large and small file operations, as well as
operational efficiency when storing billions of small files.

Many elements of a workflow require each step to
complete before you can reach the end of the job. With
checkpointing specifically, training on a model cannot
complete until the checkpoint has finished writing.
If a checkpoint requires performance that exceeds a
legacy storage system’s capability, job runtime can
slow significantly and the researcher starts asking the
question again: “why isn’t it running as fast as I need?”.

Pipeline 1

Pipeline 2

Pipeline 3

Pipeline 4

Ingest

Single IO
Profile

Single IO
Profile

Dual IO
Profile

Dual IO
Profile

Mixed IO
Profile

Mixed IO
Profile

Mixed IO
Profile

Mixed IO
Profile

Mixed IO
Profile

Ingest

Ingest

Ingest

Pre-
Process

Pre-
Process

Pre-
Process

Pre-
Process

Re-Tune

Re-Tune

Re-Tune

Re-Tune

Validate

Validate

Validate

Validate

Infer

Infer

Infer

Infer

Archive

Archive

Archive

Archive

FIG. 1

https://www.weka.io/lp/io-profiles-in-generative-ai-pipelines/

WHITE PAPER

4

4

The WEKA Data Platform’s services are specifically
designed to provide concurrent operations for all your
workloads (Figure 2), whether NLP, Computational
Chemistry for Genomics, Image Recognition, Financial
Analysis, Generative AI, or something that has yet to
be realized. With the ease of creating data experiments
on as small an environment as your laptop, imagine
the concurrency of tens or hundreds or thousands of
experiments on enterprise level infrastructure. WEKA can
handle this data blender with ease.

Checkpoint Performance Testing
To test checkpointing performance between WEKA
and another Storage platform, we utilized a tool from
NVIDIA, NeMo. NeMo is widely popular and is used as a
foundational component in large numbers of AI projects,
both large and small and is representative of a pipeline
tool that would be used for checkpointing.

NVIDIA created the NeMo™ generative AI toolkit to
help with the entire data pipeline and tool chain that a
scientist uses. This provides a consistent and optimized
infrastructure to enhance existing Deep Learning (DL)
technology and foundation models based on the lineage
of their NVIDIA GPU Container (NGC) efforts. NeMo
provides a framework for training, retuning foundation
models, GPU telemetry, TensorBoard observability and
a rich checkpoint capability designed to accommodate
different aspects of model development. If you have an
AI stack running against NVIDIA GPUs, NeMo assists
this workflow by providing features that allow taking
a pipeline for model training all the way from POC
to production. During this workflow, when failures
occur, training can be reverted and restarted using
checkpointing with model observability.

FIG. 2

Ingest Pre-
Process

Sequencing
Pipeline

NLP
Pipeline

GPU Direct NFS POSIX S3 SMB HDFS

IOPS/BANDWIDTH

FILE SIZE

READ/WRITE

NUMBER OF FILES

CV/AI
Pipeline

HPDA
Pipeline

Generative AI
Pipeline

Re-Tune Validate Infer Archive

Zero Copy Architecture | Zero Tuning IO Algorithms

https://docs.nvidia.com/deeplearning/nemo/
https://www.nvidia.com/en-us/gpu-cloud/

WHITE PAPER

5

5

NeMo’s checkpoint capability allows for incremental
training with observability. On the system being
monitored, when one of the errors mentioned earlier
occurs, reverting back to the last point when training
was progressing as expected by using best practices for
NeMo’s checkpoint recovery capabilities enables rapid
recovery, translating to faster time to restart training, less
idling of expensive GPUs while waiting to restart and a
safety net for recovery of work, regardless of toolchain or
model modality.

While NeMo’s features are well fleshed out, it is just
a layer of a stack and is dependent on a performant
infrastructure underneath it to drive real world results.
There are other AI frameworks as well that depend on
checkpointing best practices to ensure a smooth and
recoverable AI training workflow.

Process and Models Used
For this paper, we have built out a NeMo environment
and will use it to train a FastPitch parallel text-to-speech
model, an ASR speech-to-text model, as well as a larger
MegatronBERT model (BioMegatron) for NLP. This shows
checkpointing performance across relatively small,
medium, and large language models.

To start, we will finetune a single speaker FastPitch
(with alignment) model on 5 mins of a new speaker’s
data. We will finetune the model parameters only on the
new speaker’s text and speech pairs. We download the
training data, then generate and run a training command
to finetune FastPitch, and synthesize the audio from
the trained checkpoint. Documentation of how to run a
FastPitch training with NeMo including the specific model
parameters used in this example and run logs is listed in
the appendix of this paper.

WEKA Integration
Leveraging WEKA with NeMo is simple. WEKA can be
deployed in all the hyperscale clouds, or on premises, or
in a hybrid mode. Compute clients interact with WEKA
via any supported protocol. POSIX, NFS, SMB and S3
are all supported as well as NVIDIA GDS. Since many
applications are containerized, WEKA also provides a CSI
driver to directly attach to Kubernetes pods. For NeMo,
the user experience feels like being attached to a big, fast
NVME disk that is capable of exabyte scale but adheres
to all the standards you would expect from a POSIX
resource. To a researcher it feels as if your data is as local
as it would be on a workstation or laptop.

Once NeMo is configured with a WEKA POSIX client,
steps for data preparation, training, tuning and model
deployment are turnkey, and checkpoint usage is well
documented and understood.

Test Environment
To test out checkpointing, we built a small WEKA cluster
in AWS consisting of 6x i3en.2xlarge EC2 instances
using the WEKA POSIX client to talk to the GPU. We
then built out a separate c5n.18xlarge instance as a
dedicated high-performance NFS server. The training
was done on a single G4dn.8xl instance with a T4 GPU
with 16GB of vRAM. These instances were all chosen to
ensure that at the throughput needed, networking would
not be a bottleneck. Latency was measured on the
WEKA cluster using a WEKA stats function to measure
round-trip latency from client to the WEKA cluster. For
the NFS server, Tshark (terminal based Wireshark) line
capture was used to measure roundtrip latency of the
checkpoint completion.

https://docs.nvidia.com/nemo-framework/user-guide/latest/nemotoolkit/asr/results.html
https://fastpitch.github.io

WHITE PAPER

6

6

Write latency measurement:
During the FastPitch training we followed the best practices for checkpointing and using a trace mechanism,
measured how long it took to complete each checkpoint in the epoch. As shown in Figure 3, the average span between
checkpoints was only 10 seconds. Notably, the WEKA data platform was able to write the checkpoints for the FastPitch
model at an average of ~900us, while the NFS server was nearly twice the latency at ~1850us.

FIG. 3

WHITE PAPER

7

7

For the medium-sized ASR speech-to-text model in Figure 4, similar results were seen, With WEKA again being
in the ~900us average, while the NFS server was ~1825us. Note that as the model gets larger, and the number of
parameters increase, the amount of time between checkpoints becomes less predictable due to new layers being
added and different paths taken depending on weights and biases. This lack of predictability makes it harder to tune a
filesystem to match the training workload, especially when multiple pipelines are running in parallel. In this case, some
checkpoints are 30+ seconds apart, and others happen less than 5 seconds apart.

FIG. 4

WHITE PAPER

8

8

And finally, when training the larger BioMegatron model over a much larger set of parameters, we see in Figure 5 that
WEKA was able to service the checkpointing at an average of ~1090us and the NFS server averaged 1850us. While
the resolution of the graph makes it impossible to show the timestamps, the unpredictability of the checkpointing is
even more so than before, with some over 45 seconds apart, and others happening as little as 4 seconds apart. This
highlights why latency is so important: Since checkpoint timing is non-predictable, the ability to handle it before the next
checkpoint comes in becomes crucial, otherwise it can stall the entire model training until each checkpoint is committed.

FIG. 5

WHITE PAPER

9

9

Results
In this testing, we have shown how a cloud-based small
WEKA infrastructure can be up to 50% faster at handling
checkpointing than a high-performance NFS server. At
the small scale presented here, the differences may not
seem significant, but consider this: Distributed model
training as models get larger and larger will also have
distributed checkpointing. With the latest GPUs such as
the GB200 from NVIDIA being hundreds of times faster
than the single T4 used in this test, you can expect a
much faster rate of training and a much faster rate of
checkpointing as well. If the model is distributed over
multiple GPUs, then the latency time will stall all GPUs
until the checkpoint is committed.

Conclusions
Solutions for AI have until recently been based on
infrastructure geared towards traditional enterprise
IT. These solutions have often left customers with
components in the stack that limit AI/ML development
performance or and deviate from best practices in

order to accommodate legacy architectures. Modern
AI deployments require low-latency checkpointing to
mitigate risk and enable operational predictability. If
the storage layer in the stack is unable to meet an SLO
(Service level Objective), it needs to be replaced to avoid
costly delays to the AI data pipeline.

WEKA – A better solution for model
checkpointing
As shown in the results above, the WEKA latency
advantage translates to real world savings in
checkpointing completion times. From a sustainability
standpoint, the ability to rapidly recover and prevent
GPUs from re-doing hours or days of work can’t be
ignored. In contrast to NFS based solutions for model
training, WEKA has proven itself to have significantly
lower latency, as well as being able to handle any
IO profile of workload thrown at it. The table below
highlights some of the differences between WEKA and
most legacy enterprise NFS storage in an AI environment.

Legacy Infrastructure (NFS) WEKA Powered Infrastructure

Provides SLO for
Checkpoints

May have to compromise on how often
checkpoints can be taken to optimize for the
infrastructure

No checkpoint restrictions. Checkpoint as
often as needed

Multi-IO profile
performance during
Checkpointing

Performance highly variable. Higher
latency can lead to bottlenecks across the
infrastructure

Reads, writes, metadata all with consistent
low latency. QOS to help with isolation of
dedicated work flows

Tuning required per
workload/workflow

Highly specialized per workload, may
require multiple instances of storage
services with multiple different mounting
points for tuned parameters

Single mount with POSIX client provides
all storage services, deployed with devops-
level of standards and observability

WHITE PAPER

10

10

WEKA features and industry integrations also helps
optimize and streamline all parts of an AI-native
infrastructure beyond just checkpointing:

• No filesystem or client tuning requirement to optimize

for the workload. Control of training and job dynamics

is left at the researcher level as hyperparameters.

• WEKA’s ability to run anywhere including on-premises

or in the cloud allows researchers to run jobs anywhere

and take advantage of diverse compute resources.

• As performance requirements change, WEKA

can elastically scale up and down to match the

requirements needed in the AI workflow.

• NVIDIA BasePOD and SuperPOD certified

allowing for well-known reference architectures

to speed deployment.

• WEKA scaling into multi-exabytes of capacity, and

the ability to address trillions of files ensure that as

data sets continually get larger, researchers don’t

have to worry about engineering special data

directory hierarchies to hold all the data.

• WEKA transparent tiering enables researchers to store

large datasets and models for ‘explainable AI’ at scale to

achieve practical cost economics and operational ease

as the environment scales. Tiering assists with both

infrastructure cost and the sustainable OPEX of power

and cooling as well.

• WEKA Snap-to-object capabilities enable both

data mobility for hybrid use cases, and file system

recovery for data protection regardless of the

amount of data stored.

The WEKA AI native data platform has proven these
capabilities by enabling some of the largest GPU clusters
in production in the world to do groundbreaking AI
research in areas as diverse as computer vision, NLP,
High frequency trading, Computational Chemistry
and materials science, Generative AI for media and
entertainment and more. WEKA continues to help
customers get the most out of their AI processes
and workflows.

Want to know more? Visit https://www.weka.io/
data-platform/solutions/ai-machine-learning/

https://www.weka.io/data-platform/solutions/ai-machine-learning/
https://www.weka.io/data-platform/solutions/ai-machine-learning/

WHITE PAPER

11

11

Appendix
How To build a NeMo toolkit:
Use the NeMo QuickStart guide at : https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/starthere/
intro.html to set up and deploy a basic NeMo environment.

Finetuning FastPitch with the NeMo toolkit:
https://github.com/NVIDIA/NeMo/blob/stable/tutorials/tts/FastPitch_Finetuning.ipynb

FastPitch training setup and parameters for the test run:

[NeMo W 2024-02-02 21:47:39 nemo_logging:349] /usr/local/lib/python3.10/dist-packages/hydra/_internal/
hydra.py:119: UserWarning: Future Hydra versions will no longer change working directory at job runtime
by default.
 See https://hydra.cc/docs/1.2/upgrades/1.1_to_1.2/changes_to_job_working_dir/ for more information.
 ret = run_job(

[NeMo W 2024-02-02 21:47:39 nemo_logging:349] /usr/local/lib/python3.10/dist-packages/lightning_fabric/
connector.py:554: UserWarning: 16 is supported for historical reasons but its usage is discouraged.
Please set your precision to 16-mixed instead!
 rank_zero_warn(

Using 16bit Automatic Mixed Precision (AMP)
GPU available: True (cuda), used: True
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs
[NeMo I 2024-02-02 21:47:39 exp_manager:394] Experiments will be logged at
ljspeech_to_9017_no_mixing_5_mins/FastPitch/2024-02-02_21-47-39
[NeMo I 2024-02-02 21:47:39 exp_manager:835] TensorboardLogger has been set up
[NeMo W 2024-02-02 21:47:39 exp_manager:931] The checkpoint callback was told to monitor a validation
value and trainer’s max_steps was set to 1000. Please ensure that max_steps will run for at least 25
epochs to ensure that checkpointing will not error out.
 NeMo-text-processing :: INFO :: Creating ClassifyFst grammars.
Creating ClassifyFst grammars.
[NeMo W 2024-02-02 21:48:09 en_us_arpabet:66] apply_to_oov_word=None, This means that some of words
will remain unchanged if they are not handled by any of the rules in self.parse_one_word(). This may
be intended if phonemes and chars are both valid inputs, otherwise, you may see unexpected deletions in
your input.
[NeMo I 2024-02-02 21:48:09 dataset:229] Loading dataset from ./9017_manifest_train_dur_5_mins_local.
json.
76it [00:00, 2569.52it/s]
[NeMo I 2024-02-02 21:48:09 dataset:267] Loaded dataset with 76 files.
[NeMo I 2024-02-02 21:48:09 dataset:269] Dataset contains 0.08 hours.
[NeMo I 2024-02-02 21:48:09 dataset:377] Pruned 0 files. Final dataset contains 76 files
[NeMo I 2024-02-02 21:48:09 dataset:379] Pruned 0.00 hours. Final dataset contains 0.08 hours.
[NeMo I 2024-02-02 21:48:09 dataset:229] Loading dataset from ./9017_manifest_dev_ns_all_local.json.
2it [00:00, 2545.86it/s]
[NeMo I 2024-02-02 21:48:09 dataset:267] Loaded dataset with 2 files.
[NeMo I 2024-02-02 21:48:09 dataset:269] Dataset contains 0.00 hours.
[NeMo I 2024-02-02 21:48:09 dataset:377] Pruned 0 files. Final dataset contains 2 files
[NeMo I 2024-02-02 21:48:09 dataset:379] Pruned 0.00 hours. Final dataset contains 0.00 hours.
[NeMo I 2024-02-02 21:48:09 features:289] PADDING: 1
 NeMo-text-processing :: INFO :: Creating ClassifyFst grammars.
Creating ClassifyFst grammars.
[NeMo W 2024-02-02 21:48:42 en_us_arpabet:66] apply_to_oov_word=None, This means that some of words
will remain unchanged if they are not handled by any of the rules in self.parse_one_word(). This may
be intended if phonemes and chars are both valid inputs, otherwise, you may see unexpected deletions in
your input.

https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/starthere/intro.html
https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/starthere/intro.html
https://github.com/NVIDIA/NeMo/blob/stable/tutorials/tts/FastPitch_Finetuning.ipynb

WHITE PAPER

12

12

[NeMo W 2024-02-02 21:48:42 modelPT:161] If you intend to do training or fine-tuning, please call the
ModelPT.setup_training_data() method and provide a valid configuration file to setup the train data
loader.
 Train config :
 dataset:
 target: nemo.collections.tts.torch.data.TTSDataset
 manifest_filepath: /ws/LJSpeech/nvidia_ljspeech_train_clean_ngc.json
 sample_rate: 22050
 sup_data_path: /raid/LJSpeech/supplementary
 sup_data_types:
 - align_prior_matrix
 - pitch
 n_fft: 1024
 win_length: 1024
 hop_length: 256
 window: hann
 n_mels: 80
 lowfreq: 0
 highfreq: 8000
 max_duration: null
 min_duration: 0.1
 ignore_file: null
 trim: false
 pitch_fmin: 65.40639132514966
 pitch_fmax: 2093.004522404789
 pitch_norm: true
 pitch_mean: 212.35873413085938
 pitch_std: 68.52806091308594
 use_beta_binomial_interpolator: true
 dataloader_params:
 drop_last: false
 shuffle: true
 batch_size: 24
 num_workers: 0

[NeMo W 2024-02-02 21:48:42 modelPT:168] If you intend to do validation, please call the ModelPT.setup_
validation_data() or ModelPT.setup_multiple_validation_data() method and provide a valid configuration
file to setup the validation data loader(s).
 Validation config :
 dataset:
 target: nemo.collections.tts.torch.data.TTSDataset
 manifest_filepath: /ws/LJSpeech/nvidia_ljspeech_val_clean_ngc.json
 sample_rate: 22050
 sup_data_path: /raid/LJSpeech/supplementary
 sup_data_types:
 - align_prior_matrix
 - pitch
 n_fft: 1024
 win_length: 1024
 hop_length: 256
 window: hann
 n_mels: 80
 lowfreq: 0
 highfreq: 8000
 max_duration: null
 min_duration: null
 ignore_file: null
 trim: false
 pitch_fmin: 65.40639132514966
 pitch_fmax: 2093.004522404789
 pitch_norm: true
 pitch_mean: 212.35873413085938
 pitch_std: 68.52806091308594
 use_beta_binomial_interpolator: true

WHITE PAPER

13

13

 dataloader_params:
 drop_last: false
 shuffle: false
 batch_size: 24
 num_workers: 0

[NeMo I 2024-02-02 21:48:42 features:289] PADDING: 1
[NeMo I 2024-02-02 21:48:42 save_restore_connector:249] Model FastPitchModel was successfully restored
from /NeMo/weka-workspace/nemo/tutorials/tts/tts_en_fastpitch_align.nemo.
[NeMo I 2024-02-02 21:48:42 modelPT:1234] Model checkpoint restored from nemo file with path : `./
tts_en_fastpitch_align.nemo`
LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]
[NeMo I 2024-02-02 21:48:43 modelPT:728] Optimizer config = Adam (
 Parameter Group 0
 amsgrad: False
 betas: [0.9, 0.999]
 capturable: False
 differentiable: False
 eps: 1e-08
 foreach: None
 fused: None
 lr: 0.0002
 maximize: False
 weight_decay: 1e-06
)
[NeMo I 2024-02-02 21:48:43 lr_scheduler:772] Scheduler not initialized as no `sched` config supplied to
setup_optimizer()

 | Name | Type | Params
--
0 | mel_loss_fn | MelLoss | 0
1 | pitch_loss_fn | PitchLoss | 0
2 | duration_loss_fn | DurationLoss | 0
3 | energy_loss_fn | EnergyLoss | 0
4 | aligner | AlignmentEncoder | 1.0 M
5 | forward_sum_loss_fn | ForwardSumLoss | 0
6 | bin_loss_fn | BinLoss | 0
7 | preprocessor | AudioToMelSpectrogramPreprocessor | 0
8 | fastpitch | FastPitchModule | 45.8 M
--
45.8 M Trainable params
0 Non-trainable params
45.8 M Total params
183.035 Total estimated model params size (MB)
[NeMo W 2024-02-02 21:48:48 nemo_logging:349] /usr/local/lib/python3.10/dist-packages/pytorch_lightning/
loops/fit_loop.py:281: PossibleUserWarning: The number of training batches (7) is smaller than the
logging interval Trainer(log_every_n_steps=100). Set a lower value for log_every_n_steps if you want to
see logs for the training epoch.
 rank_zero_warn(

Training: 0it [00:00, ?it/s][NeMo I 2024-02-02 21:48:48 preemption:56] Preemption requires torch
distributed to be initialized, disabling preemption
Epoch 24: 100%|█| 7/7 [00:02<00:00, 3.21it/s, v_num=7-39, train_step_timing in
Validation: 0it [00:00, ?it/s]
Validation: 0%| | 0/1 [00:00<?, ?it/s]
Validation DataLoader 0: 0%| | 0/1 [00:00<?, ?it/s]
Epoch 24: 100%|█| 7/7 [00:02<00:00, 2.71it/s, v_num=7-39, train_step_timing in
 Epoch 24, global
step 175: ‘val_loss’ reached 1.89732 (best 1.89732), saving model to ‘/NeMo/weka-workspace/nemo/
tutorials/tts/ljspeech_to_9017_no_mixing_5_mins/FastPitch/2024-02-02_21-47-39/checkpoints/FastPitch--
val_loss=1.8973-epoch=24.ckpt’ as top 3

weka.io 844.392 .0665

WHITE PAPER 14

© 2019-2024 All rights reserved. WekaIO, WekaFS, WIN, Weka Innovation Network, the Weka brand mark, the Weka logo, and Radically Simple Storage are trademarks of WekaIO, Inc. and its affiliates in the United
States and/or other countries. Other trademarks are the property of their respective companies. References in this publication to WekaIO’s products, programs, or services do not imply that WekaIO intends to
make these available in all countries in which it operates. Product specifications provided are sample specifications and do not constitute a warranty. Information is true as of the date of publication and is subject to
change. Actual specifications for unique part numbers may vary. WKA393-01 05/24

Epoch 49: 100%|█| 7/7 [00:02<00:00, 3.18it/s, v_num=7-39, train_step_timing in
Validation: 0it [00:00, ?it/s]
Validation: 0%| | 0/1 [00:00<?, ?it/s]
Validation DataLoader 0: 0%| | 0/1 [00:00<?, ?it/s]
Epoch 49: 100%|█| 7/7 [00:02<00:00, 2.65it/s, v_num=7-39, train_step_timing in
 Epoch 49, global
step 350: ‘val_loss’ reached 2.04128 (best 1.89732), saving model to ‘/NeMo/weka-workspace/nemo/
tutorials/tts/ljspeech_to_9017_no_mixing_5_mins/FastPitch/2024-02-02_21-47-39/checkpoints/FastPitch--
val_loss=2.0413-epoch=49.ckpt’ as top 3
Epoch 74: 100%|█| 7/7 [00:02<00:00, 3.28it/s, v_num=7-39, train_step_timing in
Validation: 0it [00:00, ?it/s]
Validation: 0%| | 0/1 [00:00<?, ?it/s]
Validation DataLoader 0: 0%| | 0/1 [00:00<?, ?it/s]
Epoch 74: 100%|█| 7/7 [00:02<00:00, 2.71it/s, v_num=7-39, train_step_timing in
 Epoch 74, global
step 525: ‘val_loss’ reached 2.00175 (best 1.89732), saving model to ‘/NeMo/weka-workspace/nemo/
tutorials/tts/ljspeech_to_9017_no_mixing_5_mins/FastPitch/2024-02-02_21-47-39/checkpoints/FastPitch--
val_loss=2.0018-epoch=74.ckpt’ as top 3
Epoch 99: 100%|█| 7/7 [00:02<00:00, 3.16it/s, v_num=7-39, train_step_timing in
Validation: 0it [00:00, ?it/s]
Validation: 0%| | 0/1 [00:00<?, ?it/s]
Validation DataLoader 0: 0%| | 0/1 [00:00<?, ?it/s]
Epoch 99: 100%|█| 7/7 [00:02<00:00, 2.63it/s, v_num=7-39, train_step_timing in
 Epoch 99, global
step 700: ‘val_loss’ reached 1.92470 (best 1.89732), saving model to ‘/NeMo/weka-workspace/nemo/
tutorials/tts/ljspeech_to_9017_no_mixing_5_mins/FastPitch/2024-02-02_21-47-39/checkpoints/FastPitch--
val_loss=1.9247-epoch=99.ckpt’ as top 3
Epoch 124: 100%|█| 7/7 [00:02<00:00, 3.35it/s, v_num=7-39, train_step_timing in
Validation: 0it [00:00, ?it/s]
Validation: 0%| | 0/1 [00:00<?, ?it/s]
Validation DataLoader 0: 0%| | 0/1 [00:00<?, ?it/s]
Epoch 124: 100%|█| 7/7 [00:02<00:00, 2.75it/s, v_num=7-39, train_step_timing in
 Epoch 124, global
step 875: ‘val_loss’ reached 1.86749 (best 1.86749), saving model to ‘/NeMo/weka-workspace/nemo/
tutorials/tts/ljspeech_to_9017_no_mixing_5_mins/FastPitch/2024-02-02_21-47-39/checkpoints/FastPitch--
val_loss=1.8675-epoch=124.ckpt’ as top 3

http://weka.io
mailto:info%40weka.io?subject=
https://www.youtube.com/wekaio
https://www.linkedin.com/company/weka-io/
https://www.facebook.com/Weka.IO/
https://twitter.com/wekaio

